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Abbreviations 

ACS (American Cancer Society) 

AOD (Aerosol Optical Depth) 

AQS (Air Quality Subsystem) 

CSTM (Composite Space/Time Mean trend model) 

FRM (Federal Reference Method) 

GAMM (Generalized Additive Mixed Models) 

GIS (Geographic Information System) 

KC (Kriging with the CSTM) 

LUR (Land Use Regression) 

MAE (Mean Absolute Error) 

ME (Mean Error) 

MISR (Multiangle Imaging Spectroradiometer) 

MODIS (Moderate Resolution Imaging Spectroradiometer) 

MSE (Mean Square Error) 

PM2.5 (fine Particulate Matter) 

RS (Remote Sensing based PM2.5 estimates) 

SK (Simple Kriging) 

SSTM (Separable Space/Time Mean trend model) 

S/TRF (Space/Time Random Field) 

US EPA (U.S. Environmental Protection Agency)
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Abstract 

Background: To better understand adverse health effects from chronic exposure to fine 

particulate matter (PM2.5) a need exists to derive accurate estimates of PM2.5 variation at fine 

spatial scales. Remote sensing has emerged as an important means of estimating PM2.5 

exposures, but there are relatively few studies that compare remote-sensing estimates to those 

derived from monitor-based data. 

Objective: The purpose of this paper is to evaluate and compare the predictive capabilities of 

remote sensing and geostatistical interpolation. 

Methods: We develop a space-time geostatistical kriging model to predict PM2.5 over the 

continental United States and compare resulting predictions to estimates derived from satellite 

retrievals. 

Results: Within about 100 km of a monitoring station, the kriging estimate was more accurate, 

while the remote sensing estimate was more accurate for locations >100 km from a monitoring 

station. Based on this finding we developed a hybrid map that combines the kriging and satellite-

based PM2.5 estimates. 

Conclusions: This study is part of a larger investigation aimed at improving the assessment of 

exposure to ambient air pollution for chronic health effects studies. We evaluated the estimation 

capability of monitor-based interpolation to monitor-free remote sensing and found that for most 

of the populated areas of the continental United States, geostatistical interpolation supplied more 

accurate estimates than remote sensing. The differences between the estimates from the two 

methods, however, were relatively small. We conclude that in areas with extensive monitoring 

networks, the interpolation may provide more accurate estimates, but in the many areas of the 

world without such monitoring, remote sensing can provide useful exposure estimates that 

perform nearly as well. 
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Introduction 

An extensive body of research has established PM2.5 exposure (particles <2.5 µm in 

aerodynamic diameter) effects on morbidity and mortality (Hu 2009; Laden et al. 2006; Peters 

2001; Pope III 2009). Studies using the American Cancer Society (ACS) cohort to assess the 

relation between particulate air pollution and mortality rank among the most influential and 

widely cited. Due to this robust association and a lack of other large cohort studies on the long-

term effects, the ACS studies have proven important to government regulatory interventions and 

health burden assessments (Pope III et al. 2004). However, all of the national estimates from the 

ACS cohort have relied on central monitoring estimates of city-wide PM concentrations, raising 

the possibility of substantial measurement error. 

To better understand adverse health effects from PM2.5 a need exists for accurate estimates of 

the spatiotemporal variation of PM2.5 levels at fine space and time scales. Although much of the 

PM2.5 variation is regional due to secondary formation of organic carbon, sulfates and nitrates 

(Reiss et al. 2007), some PM2.5 mass is derived from local combustion, which may lead to 

variation at finer spatial scales. In some instances, these finer-scale variations in PM2.5 have been 

shown to associate with larger health effects than those that vary regionally (Jerrett et al. 2005), 

suggesting the potential importance of refining exposure predictions. 

There have been several recent attempts to predict PM at a spatial scale finer than 

observation scales based on land use regression (LUR) models (Moore et al. 2007; Ross et al. 

2007), generalized additive mixed models (GAMM) (Yanosky et al. 2008; 2009), hierarchical 

modeling (Sampson et al. 2011; Szpiro et al. 2010), geostatistical interpolation (Christakos and 

Serre 2000; Goovaerts et al. 2006; Liao et al. 2006), and remote sensing techniques (Liu et al. 

2004; van Donkelaar et al. 2010). These approaches can be classified under two categories; those 
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involving ground monitor-based estimation (first four approaches above) and those relying on 

satellite-based (monitor-free) estimation. 

To date, only one study has systematically compared monitor-free estimation with an 

empirical monitor-based approach (Paciorek and Liu 2009). The study used empirical estimates 

from a Bayesian hierarchical model which employed land use information derived from a 

geographic information system (GIS). This carefully conducted analysis over the eastern United 

States demonstrated that when land use and spatial correlations were incorporated into the 

estimation, there was little additional predictive value from the satellite aerosol optical depth 

(AOD) retrievals. This insight was based upon investigating the impact of the satellite retrievals 

on their PM2.5 estimation through the use of cross-validation R
2
 and corresponding mean squared 

prediction error. However, Kumar (2010) criticized the study for its inability to distinguish 

between the natural and anthropocentric sources of PM2.5, in part due to uncontrolled 

meteorological influences.  

A recent satellite-based study generated estimates of chronic PM2.5 exposure at 10 km 

gridded locations globally by integrating satellite-derived AOD and a chemical transport model 

that incorporates meteorology (van Donkelaar et al. 2010). These estimation surfaces depended 

on remotely sensed data collected during the period 2001-2006. The satellite-based estimates 

were, however, inevitably influenced by both random and systematic sources of uncertainty 

associated with AOD retrieval, varying relations between AOD and PM2.5, and temporal 

sampling biases (Hu 2009; Kumar 2010; Paciorek and Liu 2009). 

The main goal of the present study is to compare estimates of long-term average PM2.5 for 

the continental U.S. based on a representative geostatistical kriging model (as a purely monitor-

based approach using direct PM2.5 measurements) with estimates based on remote sensing (as a 
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monitor-free approach). In doing so, we contribute novel information to the literature by 

examining the entire continental U.S. rather than limiting the analysis to the eastern portions of 

the U.S. Our remote sensing model also directly incorporates meteorological estimates into the 

calculation of PM2.5 concentrations. As mentioned, Paciorek and Liu (2009) used a statistical 

model with auxiliary GIS data input, which is laborious and time-consuming to compile and 

execute. In contrast, we compared estimates based on remote sensing with those based on 

monitoring data only to determine the extent to which remote sensing improves estimation.  

Our research is part of a larger project to enhance the prediction capabilities of PM2.5 at finer 

spatial resolution over the U.S. and Canada and to conduct detailed assessment of the health 

effects from particulate air pollution on all-cause and cause-specific mortality based on 

concentration-response functions from the ACS cohort. 

 

Materials and Methods 

Pollution data (Monthly PM2.5 data) 

We obtained daily PM2.5 measurements for the continental U.S. during 1997-2010 (1,742,020 

monitor-days) from the Air Quality Subsystem (AQS) of the U.S. Environmental Protection 

Agency (USEPA). Our analysis was restricted to filter-based monitors using the Federal 

Reference Method (FRM) - parameter code 88101. The initial daily data were aggregated to 

obtain monthly averages that reflect seasonal variation in PM2.5 (Bell et al. 2007), which reduces 

the computational burden associated with the use of daily measurement data. Since many 

monitoring stations were only in service for part of reporting time period, we only included 

monitoring stations with at least 50% of possible complete samples in a month. Although the 

USEPA does not provide monthly PM2.5 averages on its air pollution data center web sites, 
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quality assessment was conducted by comparing arithmetic yearly averages based on the 

monthly data against annual averages for FRM monitors available from the USEPA. The 

correspondence between USEPA annual averages and annual averages based on the monthly 

averages was very strong r=0.996. Monthly values were retained for modeling if the data were 

determined to have the 50% completeness, resulting in monthly data from 1,315 sites for the 

interpolation method. We selected a random sample of 147 of these sites (Figure 1) for the 

validation study described below. 

 

Satellite-Based PM2.5 Estimates of Long-Term Average (2001-2006) 

We obtained 6-year average PM2.5 estimates that were derived for a previous study using an 

integrated remote sensing-chemical transport model approach (van Donkelaar et al. 2010). 

Ground-level concentrations of PM2.5 were estimated using satellite atmospheric composition 

data combined with local coincident scaling factors from the GEOS-Chem chemical transport 

model (http://geos-chem.org). Specifically, AOD data from the MODIS (Moderate Resolution 

Imaging Spectroradiometer) and MISR (Multiangle Imaging Spectroradiometer) satellites were 

regridded to a 0.1 by 0.1 degree resolution (~10 by 10 km). The AOD retrievals were translated 

into estimated ground PM2.5 using the output from GEOS-Chem simulations. As part of their 

analysis, van Donkelaar et al. (2010) removed any AOD with an anticipated bias greater than 0.1 

or 20% (whichever was larger), and limited the analysis to spatial points with at least 50 

acceptable-quality near-daily AOD values. The authors estimated 6-year average exposures in 

part because satellite information was missing for many spatial points of the 10 km remote 

sensing grid over time: averaging data over a 6-year period resulted in comprehensive spatial 

coverage of the satellite AOD data (~95% global coverage) used to derive long-term PM2.5 
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exposure estimates for the 10 km gridded locations. For the present study, we use this estimation 

surface, hereafter referred to as “RS”, as a baseline method for comparison with 6-year average 

monitor-based PM2.5 exposure estimates derived from ground measurements for the same time 

period. 

Both monitor-based (measured) and monitor-free (satellite-based) PM2.5 were initially linked 

to longitude and latitude (in degree), but were thereafter projected to a planar surface (in km) for 

our analysis. 

   

Kriging 

Kriging is a generalized linear regression technique that accounts for spatiotemporal 

correlations between samples and provides optimal estimates at unmonitored points. The optimal 

estimates may be obtained by finding weights that minimize the mean square error (Olea 1999). 

Many linear kriging methods do not integrate information from physical models or higher order 

statistics regarding non-linearity, non-Gaussianity, or data uncertainty, but kriging is still a useful 

method to interpolate numerous space/time dynamics. In our analysis we used simple kriging 

(SK) with a refined smoothing filter (referred to as Composite Space/Time Mean trend model) as 

described below. 

Let us first define the Space/Time Random Field (S/TRF) Z(p)=Z(s,t) (Christakos 2000) as a 

random variable  (specifically, the PM2.5 distribution over space and time) indexed by the two-

dimensional spatial location s and the one-dimensional temporal point t, and Y(p)=log(Z(p)) as 

its log transformation. We also define mY(p) as a deterministic function representing the global 

mean trends in Y(p) that is constructed such that the deterministic transformation X(p)=Y(p)-

mY(p) produces a homogeneous stationary S/TRF (defined by a locally constant mean 
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mX(p)=E[X(p)], where E[.] is the expectation operator, and by a covariance cX(p, p’)= E[(X(p)-

mX(p))(X(p’)-mX(p’))] that is a function of the spatial lag r=||s-s’|| and temporal lag τ=|t-t’| 

between points p=(s,t), and p’=(s’,t’)). The mean trend function characterizes the systematic 

trends and spatiotemporal structures of the PM2.5 distribution, whereas the covariance function 

addresses the correlation structures for the S/TRF, taken at a pair of points.    

The SK estimation χ̂k of X(p) at estimation points k is a linear combination of measurements 

χχχχd (i.e. realization of X(p) at data points pd) given by: 

χ̂k = mX(pk) +λΤ
(χχχχd – mX(pd)), [1] 

where λ is a column vector of SK weights (in general the closer composite space/time separation 

between pk and pd, the greater the weight), mX(pk) is the mean trend of X(p) at the estimation 

point pk, and mX(pd) is a column vector of expected values for X(p) at the data points. The vector 

of SK weights is given by (Olea 1999): 

 λ
T
 = ck,dcd,d

-1
, [2] 

where ck,d = cX(pk,pd) is a row vector of covariance for X(p) between the estimation point and 

data points, and cd,d = cX(pd,pd) is a covariance matrix for X(p) between the data points. Eqs. [1] 

and [2] are based on so called Ordinary S/TRF that is a limiting case of a more Generalized 

S/TRF accounting for spatial non-homogeneity and temporal non-isotropy (Christakos 1992). 

We implemented space/time SK estimation using the geostatistical library function BMElib 

written in MATLAB (http://www.unc.edu/depts/case/BMELIB, Christakos et al. 2002). BMElib 

provides an extensive suite of computational functions with which to model the space/time 

global trend mY(p) and space/time residual covariance cX(p, p’) (see Supplemental Material, 

Equation [S1]) functions and derive kriging estimates. 
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Global mean trend models 

A way to obtain the global mean trend mY(p)=mY(s,t) is to use the Separable Space/Time 

Mean trend model (SSTM) (Christakos et al. 2002). The SSTM approach first calculates raw 

spatial means by averaging the measurements at fixed monitoring sites, and raw temporal means 

by averaging the measurements at fixed monitoring time events. Next, an exponential filter is 

applied to the raw spatial and temporal means to derive the smoothed spatial mean component 

mY(s) and smoothed temporal component mY(t), respectively. For example, the smoothed mY(s) 

value is calculated for any spatial point s of interest as the weighted average of the raw spatial 

means, where the weights decrease exponentially with the distance between each s and the 

location of the monitoring station where that raw spatial mean was calculated. The space/time 

mean trend, mY(s,t) is combined as an additive function of mY(s) and mY(t), i.e.: 

mY(s,t)=mY(s)+mY(t)-µ, [3] 

where µ is the mean value of mY(t), such that mY(t)-µ  represents the fluctuation of mY(t) around 

its mean. The mY(s) denotes persistent spatial characteristics in PM2.5 whereas the mY(t) captures 

seasonal trends in PM2.5. The mean trend model is “separable” because each of the smoothed 

components relies on either a purely spatial or purely temporal metric. The SSTM has performed 

well in numerous smaller-scale (i.e. state- or city-wide) geostatistical studies (Christakos and 

Serre 2000; Lee et al. 2010; 2011). 

A visual inspection of the time series of PM2.5 plotted for all monitoring stations (not shown) 

revealed a 1-year temporal periodicity in PM2.5 levels due to seasonal effects. This periodicity 

was shifted in time depending on where the monitoring station was located. For example, PM2.5 

levels at a monitoring station in the western U.S. (Figure 2A,B) were highest in November, while 
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the PM2.5 levels at station in the eastern U.S. (Figure 2A,C) were highest in August. We assumed 

the periodicity could be fit using weights calculated based on an exponentially decaying 

function. The Composite Space/Time Mean (CSTM) trend model (Figure 2B,C) is based on a 

composite space/time metrics (neither purely spatial nor purely temporal) and applies an 

exponential spatial-averaging to the selected measurements to obtain a smoothed mean trend 

value for each spatiotemporal coordinate pj = [sj tj]: 

mY(sj,tj) = wii=1

N

∑ Y(si,ti) / wii=1

N

∑ , [4] 

where Y(si,ti) is the log-PM2.5 measurement at point pi=[si,ti] such that the Euclidean distance 

between si and sj, d(si, sj)  ≤ 100 km, |ti – tj| ≤ 12 months, and the weight wi is equal to exp[-d(si, 

sj)/ar-|ti – tj|/at], where ar and at are respectively the spatial and temporal ranges of the 

exponential smoothing function (in our example ar =50 km and at = 3 months).  

We used a cross-validation procedure to compare the accuracy of kriging PM2.5 estimates 

based on the CSTM (referred to as KC estimates hereafter) versus the SSTM (i.e., KS estimates) 

as described in detail in Supplemental Material. We found that the CSTM outperformed the 

SSTM, and thus we used kriging with the CSTM (KC) to derive our global mean trend mY(p) and  

interpolation estimates for comparison with RS-based estimates respectively. 

 

Validation of KC with RS 

Since the RS estimates correspond to chronic exposures to PM2.5 equivalent to 6-year 

average values, we compared them to the 6-year average of monthly KC estimates. For 

validation purposes we removed all 6-year PM2.5 averages measured at the 147 randomly 

selected validation monitors and derived KC estimates based on data from the remaining 1,315 

training monitors only. Next we derived KC and RS estimates of the 6-year PM2.5 averages for 
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each of the validation monitors and compared them with the removed measured (true) values to 

quantify the mapping accuracy of the KC and RS methods. Finally we investigated how mapping 

accuracy changes for each validation monitor as a function of the distance with its closest 

neighbor amongst the training monitors. The more details of this validation procedure are as 

follows: 

i. Select one validation site from which to extract monthly measurements between January 

2001 and December 2006 and define them as a vector of validation values χv; 

ii. Use the kriging equation [Eq. 1] with the training dataset to obtain monthly KC estimates 

χk of PM2.5 at the validation monitor (so that each value of the vector χk is a set of KC 

estimates of the corresponding vector χv); 

iii. Calculate the 6-year averages based on the monthly values (i.e. the average χ̂v of the χv 

values and the average χ̂KC of the χk values); 

iv. Extract the RS estimate χ̂RS (remote sensing-based estimation surface averaged over the 

time period 2001-2006) for that validation monitor; 

v. Iterate the steps above, choosing another validation site among the 147 sites; 

vi. Out of the 147 sets of χ̂v, 
^̂χKC and χ̂RS values we retained 74 with data that are ≥80% 

complete (≥58 of 72 possible monthly records available during 2001-2006). This 80% 

completeness criterion may be customized, but we note that selecting any percent greater 

than 80 did not substantially alter the validation results; 

vii. The 74 validation sites were categorized into 6 groups based on the spatial lag between 

the validation monitor and its closest training monitor. The length of the first three 

classes is equidistant (15 km), and thus the upper limit of the third class is about 45 km. 

Then we were left with the other 15 validation sites to assign: The length of the last three 
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classes reduces to 10km (fourth lag between 50 and 60 km, fifth 60-70 km, and sixth 

greater than 70 km though the minimum values for the last class is 90.8 km) to assign a 

relatively equal number of the remaining validation sites to each of the last three classes; 

viii. For each spatial lag class l=1,…,6 and for each method m=KC or RS we calculated the 

Mean Error (MEm
(l)

), the Mean Square Error (MSEm
(l)

) and the Mean Absolute Error 

(MAEm
(l)

) (Lee and Wentz 2008). For each spatial lag class we calculate the percent 

change in MSE and MAE from the RS to KC methods [e.g., % change in MSE
(l)

 = 

[(MSEKC
(l)

 – MSERS
(l)

) / MSERS
(l)

]×100, so that a negative percent change means that KC 

has a lower estimation error than RS], as well as the correlation coefficients (i.e. 

Pearson’s r and Spearman’s ρ) between the validation values χ̂v 
and corresponding 

estimates  ^̂χKC and χ̂RS  within that class lag. 

This procedure produces a validation that goes beyond the traditional approach of examining the 

accuracy of the method across the entire domain with an MSE. Instead we examine the distance 

away from a monitor at which each method produces a more accurate result. 

 

 Results 

KC vs. RS 

As evidenced by its lower MSE and MAE statistics and negative values for % change in 

MSE and MAE (Table 1), the KC method outperforms the RS method consistently up to the fifth 

spatial lag class (corresponding to an average distance of 65.5 km between the estimation point 

and its nearest measurement site), but conversely the RS method becomes more accurate when 

the estimation point is about 106 km away from the nearest measurement site. The estimation 

accuracy of a method along the spatial lags may be affected by (1) spatial distance (between 
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estimation and data points), and (2) data quality (whether estimates are based on PM2.5 

measurements or on auxiliary information such as AOD). In the absence of nearby 

measurements, RS estimation based on local AOD was more accurate than KC estimation based 

on measurements at a distant monitor. 

As seen in Table 1, the MSE and MAE percent change from the RS to KC methods varies 

gradually across classes. For example the MSE percent change varies gradually from -72.80% in 

the first class to -55.07% in the fourth class (as opposed to the unstable variation in the absolute 

value MSE for the KC method, which goes from 1.229 in first class to 0.699 in the fourth class). 

Focusing on the MSE/MAE percent changes in Table 1, we find that the MSE/MAE percent 

changes are negative from the first to the fifth classes, while the changes are positive at the sixth 

class. This indicates that KC performs better than in the first five classes with shorter spatial lags, 

while the RS performs better in the sixth class with the longest spatial lag. 

The KC predictions are positively and strongly correlated with corresponding measurements 

at any class, as indicated by the r values close to 1 (Table 1), with the exception of the r value of 

0.071 at the fourth class, which is attributed to a small sample size and the presence of an outlier, 

which once removed results in a recalculated Pearson’s r of 0.930. Apart from that outlier, KC r 

values are better (closer to 1) than those of the RS method for the first five classes, while the 

opposite is true for the sixth class. The Spearman’s ρ values reveal a similar pattern. This again 

indicates that KC performs better that RS for short spatial lags, whereas RS becomes the better 

estimation method at longer distances. 

To elucidate the spatial lag at which RS becomes the better estimation method, we plotted the 

MSE percent change as a function of the spatial lag using the second order polynomial 

regression that fits the MSE changes in a least-squares sense (R
2
=0.9736) (Figure 3). The MSE 
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percent change is negative (i.e. KC performs better than RS) for separation distances less than 

97.8 km, while the opposite is true beyond that separation distance. However, we caution that a 

different validation dataset or classification may yield different results for the specific distance at 

which RS performs better than KC. 

 

Implication to mapping 

We generated 10 km-gridded estimation points over space by calculating a weighted average 

of the KC and RS estimates. The weights are negatively related to the MSE of the KC and RS 

estimates, which vary as a function of the spatial distance between the estimation point and its 

closest monitoring site. The KC and RS estimates are equally weighted when the separation 

distance = 97.8 km, the distance at which MSE for the KC and RS estimates are equal (see 

Results). For a location < 97.8 km from a monitoring site, we set the KC MSE (MSEKC) to 1, and 

calculate a relative MSE for RS (MSERS) = 100/(100+q), where q is the negative percent change 

in the RS MSE relative to the KC MSE (Figure 3). KC and RS weights are respectively defined 

by: 

MSERS /(MSERS + MSEKC), [5] 

MSEKC /(MSERS + MSEKC). [6] 

For any q ≤ -100 the contribution of RS would be negligible, and we simply set the KC and RS 

weights to 1 and 0 respectively. For a location ≥ 97.8 km from a monitoring site, we set the 

MSERS to 1, and calculate the MSEKC = 100/(100-q), where q is a positive value. KC and RS 

weights are also based on Eqs. [5] and [6], but they are respectively set to 0 and 1 for any q ≥ 

100.  
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We generated 10 km-gridded estimation points over space (the grid cell size used by the RS 

method) using the RS estimates (Figure 4A) and KC estimates (Figure 4B) to calculate a 

weighted average based on both approaches. The resulting map (Figure 4C) shows estimated 

PM2.5 levels that are higher than those based only on KC estimates in areas with sparse 

monitoring data in which monitor-based KC estimates may not be accurate. 

 

Discussion 

We compared the best available long-term PM2.5 estimates using monitor-based methods 

(KC estimates) and monitor-free methods (RS estimates). The multi-year duration (2001-2006) 

we depended upon may be interchangeable with the time duration between 2-5 years commonly 

found in long-term PM exposure-health effect studies. We found a cut-off separation distance of 

97.8 km at which the two methods showed an identical estimation performance. PM2.5 

measurements contributed significantly to the estimation up to a distance of 97.8 km from the 

measurement site, but the contribution of the measurements to the estimation was negligible 

beyond that spatial range. Based on the validation results, the KC method is preferable for 

estimating chronic exposure to PM2.5 up to about 100 km from a measurement site, while the RS 

method performed better beyond that range.  

We used a weighted average to combine the KC and RS estimates according to the distance 

between the measurement point and estimation site, but may refine this approach in the future, 

for example, by including more monitors from the 1315 training sites for validation purposes 

(though the complete set of 72 monthly records for 2001-2006 are available from only 160 of the 

monitors). Moreover the KC method using ground measurements is potentially more accurate 

than the RS method for deriving estimates over shorter time scales (e.g. yearly, or monthly). 
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Therefore, developing an efficient way to combine information from the RS estimates and 

ground measurements (e.g. using the correlation structures between indirect RS data and direct 

ground measurements rather than simply taking a weighted average of collocated KC and RS 

estimates) may lead to substantial improvements in the estimation of PM2.5 exposure at 

space/time resolutions of biological relevance for health studies. 

The KC method we developed may be useful for a wide variety of human health studies, but 

the RS method appears to perform better for estimating exposures of populations that live at 

relatively longer distances from monitors. A significant portion of the U.S. population (according 

to 2000 statistics from the U.S. Census Bureau) resides near monitors (i.e. 74.2% are within 25 

km, 89.8% are within 50 km, 96.5% are within 75 km, and 98.5% are within 97.8 km, the cut-off 

distance beyond which the RS method was more accurate based on our analysis). Therefore, in 

jurisdictions with fairly dense monitoring networks such as the U.S., it may be appropriate to 

assess exposure with the KC method using nearby ground measurements. However, in most 

other regions of the world where few PM2.5 monitors exist, RS provides a critical information 

source (Brauer et al. 2011). We conclude that because the differences between estimates based 

on the two methods were relatively small, for the many areas of the world without dense 

monitoring remote sensing can provide useful exposure estimates that perform nearly as well as 

ground-based estimates from a dense network. 

The ability to estimate PM2.5 based on satellite remote sensing of AOD has advanced rapidly 

in recent years (Hoff and Christopher 2009). Further improvements in accuracy can be expected 

through advances in retrieval algorithms to infer AOD from measured radiation, improved 

calculation of the AOD to PM2.5 ratio, and new satellite instrumentation. As PM2.5 estimation 

based on remote sensing continues to improve, RS-based estimates may outperform KC 
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estimates at distances that are closer to monitor locations than the current 97.8km cut-point 

identified by our analysis. First, additional information concerning land use, traffic, and 

population may be incorporated to inform PM2.5 concentration estimates (Paciorek and Liu 

2009). It can process through a multivariate estimation framework. Second it may be possible to 

use chemical models to derive a more informative covariance structure and thus more accurate 

interpolation estimates, particularly when PM2.5 monitor data are limited. Development of 

techniques to combine information from remote sensing, models, and monitors should ultimately 

yield the best estimate of PM2.5 distribution. 

 

Conclusions 

We developed a geostatistical interpolation method (KC) to estimate chronic exposure to 

PM2.5 over the U.S., and compared these monitor-based estimates with monitor-free RS 

estimates for constructing an improved assessment of long-term PM2.5 exposure. We identified 

the distance (97.8 km) between estimation sites and monitors within which KC estimates are 

more accurate than those based on RS, and conversely beyond which RS estimates are superior. 

This cut-off radius may be used to combine the KC- and RS-based estimates to build an up-to-

date map of chronic exposure to PM2.5. The exposure map can provide crucial information for 

improved risk assessment and be used to improve our ability to study associations between long 

term exposure to air pollution and adverse health effects in the U.S. 
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No. of validation 

monitors 

32 13 14 4 6 5 

Average distance from 

monitors to estimation 

sites (km) 

7.6 20.9km 39.1km 56.5km 65.5km 106.0km 

MSE 

KC 

1.229 1.610 1.871 0.699 1.145 2.762 

MSE 

RS 

4.516 5.307 7.320 1.555 3.014 2.230 

MSE change (%) 

RS to KC 

-72.796 -69.672 -74.438 -55.066 -62.017 19.270 

MAE 

KC 

0.799 1.084 1.172 0.781 0.993 1.377 

MAE 

RS 

1.551 1.883 2.264 1.019 1.626 1.279 

MAE change (%) 

RS to KC 

-48.512 -42.401 -48.261 -23.384 -38.940 7.223 

ME 

KC 

0.228 0.035 0.511 0.108 -0.586 -0.842 

ME 

RS 

0.202 0.402 2.264 1.019 0.148 0.088 

Pearson r 

KC 

0.929 0.873 0.882 0.071 0.861 0.886 

Pearson r 

RS 

0.733 0.534 0.879 0.644 0.447 0.908 

Spearman ρρρρ    

KC 

0.826 0.786 0.917 0.200 0.600 0.800 

Spearman ρρρρ    

RS 

0.546 0.615 0.943 0.400 0.600 0.900 

Table 1: Validation statistics for the KC and RS methods 

MSE: Mean Square Error, MAE: Mean Absolute Error, ME: Mean Error 
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FIGURE LEGENDS 

 

Figure 1. Monitoring stations for the U.S. Environmental Protection Agency’s PM2.5 

measurements. Training data for estimation were obtained from 1315 sites indicated by circles. 

Data for validation were obtained from 147 randomly selected validation sites indicated by green 

triangles). 

 

Figure 2. (A) Map of the U.S. indicating the month of the year when the monthly average PM2.5 

concentration is highest. (B, C) PM2.5 measurements (blue solid line) and corresponding CSTM 

(red solid line) and SSTM trend (black dotted line) for a single monitoring site in the Western 

U.S. (B) and Eastern U.S (C). The individual sites are circled in panel A. 

 

Figure 3. Percent change in MSE from the RS to the KC method (triangles) shown as a function 

of the distance between the validation point and its closest measurement site. The blue curve 

indicates a second order polynomial regression model that fits the MSE changes. 

 

Figure 4. Average PM2.5 exposure estimates at 10-km gridded locations for 2001 - 2006 based on 

(A) RS (integrated remote sensing-meteorology model), (B) KC, and (C) a combination of the 

RS and KC methods. 
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Figure 1. Monitoring stations for the U.S. Environmental Protection Agency’s PM2.5 measurements. Training 
data for estimation were obtained from 1315 sites indicated by circles. Data for validation were obtained 

from 147 randomly selected validation sites indicated by green triangles).  
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Figure 2. (A) Map of the U.S. indicating the month of the year when the monthly average PM2.5 
concentration is highest. (B, C) PM2.5 measurements (blue solid line) and corresponding CSTM (red solid 

line) and SSTM trend (black dotted line) for a single monitoring site in the Western U.S. (B) and Eastern U.S 

(C). The individual sites are circled in panel A.  
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Figure 3. Percent change in MSE from the RS to the KC method (triangles) shown as a function of the 
distance between the validation point and its closest measurement site. The blue curve indicates a second 

order polynomial regression model that fits the MSE changes.  
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Figure 4. Average PM2.5 exposure estimates at 10-km gridded locations for 2001 - 2006 based on (A) RS 
(integrated remote sensing-meteorology model), (B) KC, and (C) a combination of the RS and KC methods. 
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